Brownian Motion

Abhinav Mehta

April 25, 2020

1 Definition

A stochastic process is a set of random variables usually indexed by time. We define a stochastic process $w: \mathbb{R}^{+} \rightarrow \mathbb{R}$ with the following properties as a Brownian motion:
(a) $w(0)=0$
(b) $w(t)$ is continuous in time i.e.

$$
\forall \epsilon>0, \exists \delta>0 \text { such that }\left|t_{1}-t_{2}\right|<\delta=>\left|w\left(t_{1}\right)-w\left(t_{2}\right)\right|<\epsilon
$$

(c) $w(t)$ has independent increments i.e.

$$
w\left(t_{1}\right)-w\left(t_{2}\right) \perp w\left(t_{3}\right)-w\left(t_{4}\right) \text { if }\left(t_{1}, t_{2}\right) \cap\left(t_{3}, t_{4}\right)=\{ \}
$$

(d) $w(t)$ is "normally" stationary i.e.

$$
w\left(t_{1}\right)-w\left(t_{2}\right) \sim N\left(0,\left|t_{1}-t_{2}\right|\right)
$$

2 Properties

2.1 Distance

We want to evaluate the distance traveled by a wiener process between $[0, T]$ i.e.

$$
\begin{aligned}
\int_{0}^{T}|d w(t)| & =\lim _{n \rightarrow \infty} \sum_{k=0}^{k=n-1}\left|w\left(\frac{(k+1) T}{n}\right)-w\left(\frac{k T}{n}\right)\right| \\
& =\lim _{n \rightarrow \infty} \sum_{k=0}^{k=n-1}\left|X_{k}\right|, X_{k} \sim N\left(0, \frac{T}{n}\right) \\
& =\lim _{n \rightarrow \infty} \sqrt{\frac{T}{n}} \sum_{k=0}^{k=n-1}\left|X_{k}\right|, X_{k} \sim N(0,1)
\end{aligned}
$$

using law of large numbers,

$$
\begin{aligned}
& =E\left(\left|X_{1}\right|\right) \lim _{n \rightarrow \infty} \sqrt{n T}, X_{1} \sim N(0,1) \\
& =E\left(Y_{1}\right) \lim _{n \rightarrow \infty} \sqrt{n T}, Y_{1} \sim \operatorname{Half-\operatorname {Normal}(0,1)} \\
& =\sqrt{\frac{2}{\pi}} \lim _{n \rightarrow \infty} \sqrt{n T} \\
& =\infty
\end{aligned}
$$

2.2 Non-differentiable

We first define a random variable $m(t)=\max _{0<s<t} w(s)$. Now,

$$
\begin{aligned}
P(m(t)<x) & =P\left(\max _{0<s<t} w(s)<x\right) \\
& =P(w(\tau)<x), \tau=\min \{u: \forall v \in(0, t), w(v) \leq w(u)\} \\
& =1-P(\tau<t), \tau=\min \{u: w(u) \geq x\} \\
& =1-P(\tau<t, w(t)<x)-P(\tau<t, w(t)>x), \tau=\min \{u: w(u) \geq x\} \\
& =1-P(\tau<t, w(t)-w(\tau)<0)-P(\tau<t, w(t)-w(\tau)>0), \tau=\min \{u: w(u) \geq x\} \\
& =1-2 P(\tau<t, w(t)-w(\tau)>0), \tau=\min \{u: w(u) \geq x\} \\
& =1-2 P(w(t)>x) \\
& \left.=2 \Phi\left(\frac{x}{\sqrt{t}}\right)\right)-1
\end{aligned}
$$

Suppose that $w(t)$ is differentiable i.e.

$$
\begin{aligned}
\forall \delta \exists N \text { s.t. } 0\left|<t_{1}-t_{2}\right|<\delta & =>\frac{\left|w\left(t_{1}\right)-w\left(t_{2}\right)\right|}{\left|t_{1}-t_{2}\right|}<N \\
& =>\left|w\left(t_{1}\right)-w\left(t_{2}\right)\right|<N \delta
\end{aligned}
$$

Next, we move to probability space,

$$
\begin{aligned}
P\left(\left|w\left(t_{1}\right)-w\left(t_{2}\right)\right|<N \delta\right) & \leq P\left(w\left(t_{1}\right)-w\left(t_{2}\right)<N \delta\right) \\
& =P\left(m\left(t_{1}-t_{2}\right)<N \delta\right) \\
& \left.=2 \Phi\left(\frac{N \delta}{\sqrt{\delta}}\right)\right)-1 \\
& =2 \Phi(N \sqrt{\delta})-1
\end{aligned}
$$

We observe that as $R H S=\lim _{\delta \rightarrow 0} 2 \Phi(N \sqrt{\delta})-1=0$ implying that $w(t)$ is nowhere differentiable.

2.3 Quadratic variation

We want to evaluate the sum of squared distance traveled by a wiener process between $[0, \mathrm{~T}]$ i.e.

$$
\begin{aligned}
\int_{0}^{T} d w(t) & =\lim _{n \rightarrow \infty} \sum_{k=0}^{k=n-1}\left[w\left(\frac{(k+1) T}{n}\right)-w\left(\frac{k T}{n}\right)\right]^{2} \\
& =\lim _{n \rightarrow \infty} \sum_{k=0}^{k=n-1} X_{k}^{2}, X_{k} \sim N^{2}\left(0, \frac{T}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{T}{n} \sum_{k=0}^{k=n-1} X_{k}^{2}, X_{k} \sim N(0,1)
\end{aligned}
$$

using law of large numbers,

$$
\begin{aligned}
& =T E\left(X_{1}^{2}\right), X_{1} \sim N(0,1) \\
& =T E\left(Y_{1}\right), Y_{1} \sim \chi_{1}^{2} \\
& =T
\end{aligned}
$$

To be consistent with this observation, we would need to use $(d w(t))^{2}=d t$ in future sections.

3 Ito's calculus

Suppose that we have a C^{∞} function $f: \mathbb{R} \rightarrow \mathbb{R}$. Now, we want to compute $\Delta f\left(w_{t}\right)$. We use Taylor series,

$$
\begin{aligned}
\Delta f\left(w_{t}\right) & =f^{\prime}\left(w_{t}\right) \Delta w_{t}+f^{\prime \prime}\left(w_{t}\right)\left(\Delta w_{t}\right)^{2}+f^{\prime \prime \prime}\left(w_{t}\right)\left(\Delta w_{t}\right)^{3}+\ldots \\
& =f^{\prime}\left(w_{t}\right) \Delta w_{t}+f^{\prime \prime}\left(w_{t}\right)(\Delta t)^{2}+f^{\prime \prime \prime}\left(w_{t}\right)\left(\Delta w_{t}\right)^{3}+\ldots \\
& =f^{\prime}\left(w_{t}\right) \Delta w_{t}+f^{\prime \prime}\left(w_{t}\right)(\Delta t)^{2} \text { (ignoring higher order terms) }
\end{aligned}
$$

Now, if we have $f\left(t, X_{t}\right)$ where $d X_{t}=\mu_{t} d t+\sigma_{t} d w_{t}$, then we can can write,

$$
\begin{aligned}
d f\left(t, X_{t}\right) & =\frac{\partial f}{\partial t} d t+\frac{\partial f}{\partial x} d X_{t}+\frac{\partial^{2} f}{\partial x^{2}} d\left(X_{t}\right)^{2} \\
& =\left(\frac{\partial f}{\partial t}+\mu_{t} \frac{\partial f}{\partial x}+\frac{\sigma_{t}^{2}}{2} \frac{\partial^{2} f}{\partial x^{2}}\right) d t+\frac{\partial f}{\partial x} d w_{t}
\end{aligned}
$$

3.1 Self-integral

We want to know the integral of a wiener process with itself between $[0, T]$ i.e. $\int_{0}^{T} w(t) d w(t)$. Firstly, we note that we get the below from Ito's,

$$
\begin{aligned}
(w(t))^{2}-(w(0))^{2} & =\int_{0}^{t} d(w(s))^{2} \\
& =\int_{0}^{t} 2 w(s) d w(s)+\int_{0}^{t} 2(d w(s))^{2} \\
& =2 \int_{0}^{t} w(s) d w(s)+\int_{0}^{t}(d t)^{2}
\end{aligned}
$$

Now, we can easily see that

$$
\int_{0}^{t} w(s) d w(s)=\frac{(w(t))^{2}}{2}-\frac{t}{2}
$$

4 Martingale representation theorem

If M_{t} is a martingale in $\left(\Omega, \mathcal{F}_{t}, P\right)$ i.e.

$$
E^{P}\left[M(s) \mid \mathcal{F}_{t}\right]=M(t)
$$

then there exists an adapted process f such that

$$
M(t)-M(0)=\int_{0}^{t} f(u) d w(u)
$$

