1 Correlation matrix

Let us assume an n-dimensional stochastic process X = [X!, X?..

at m-points t1, s, ...,t,,. Then,
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Now, we observe that,

cov(X) = E(XXT) - BE(X)E(XT)
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E(X?2XY) - E(X*)B(XY)
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X ”]T which are sampled
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var(X')  cov(X!, X?) cov(X1, X™)
cov(X2, X1)  war(X?) cov(X?2, X™)
L cov(X™, XY)  cov(X", X?) var(X™)

We can trivially see that the covariance matrix is symmetric. We can also prove that the co-
variance matrix is positive semi-definite. Let us take a random variable Y = >~ a; X' where

a=[ay,az,...a,] € R™. Then,



var(Y) = var(z a; X"
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Since var(Y) is always positive and @ was chosen arbitrarily from R™. And,

—

var(Y) = a’ cov(X)d > 0
implies that the covariance matrix is positive semi-definite.

Covariance can be standardized to correlation by dividing with their corresponding standard
deviations i.e.

corr(X) = Dilcov()_(’)(Dfl)T, where D = diag(cov(X))

2 Cholesky decomposition

A matrix A is symmetric (i.e. A = AT), positive-definite matrix (z? Az > 0,Vz) iff it is possi-
ble to write it as a product of unique lower triangular matrix L with positive diagonal values
and its transpose i.e.

A=LL"

where,
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Given a covariance matrix C' (correlation is D~1C (Dil)T), we would like to apply a trans-
formation on Y where Y;’s are uncorrelated with 0 mean and unit variance, so that replicates
the relationships in C. Since C is symmetric and positive-definite, we can easily decompose C'
as

C=LL"

Now, we apply the transformation L on Y giving Z = LY. Computing the covariance for Z,
we have,
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