Numeraire

Abhinav Mehta

April 26, 2020

1 Definition

A numeraire N_{t} is a strictly positive adapted process on \mathcal{F}_{t}; and can be interpreted as a unit of reference. Common numeraires are:

- Money market account which is the money accumulated in a bank account i.e.

$$
N(t)=\exp \left(\int_{0}^{t} r_{s} d s\right)
$$

The induced equivalent martingale measure is famously called risk-neutral measure.

- Zero-coupon bond $P(t, T)$ maturing T with $P(t, T)=1$
- A combination of zero-coupon bonds with varying maturities i.e.

$$
N_{t}=\sum_{k=1}^{n}\left(T_{k}-T_{k-1}\right) P\left(t, T_{k}\right)
$$

where $0<T_{1}<T_{2}<\ldots<T_{n}$ and $0 \leq t \leq T_{n}$.

2 Measure change

2.1 Equivalent measure

Measures \tilde{P} and P are said to be equivalent if
(a) $\operatorname{supp}(\tilde{P})=\operatorname{supp}(P)$ i.e. $\tilde{P}(A)>0 \Longleftrightarrow P(A)>0, \forall A$.
(b) There exists a stochastic process $Z=\frac{d \tilde{P}}{d P}$ s.t.

- $Z(\omega)>0, \forall \omega$
- $E^{P}(Z)=\int Z(\omega) d P(\omega)=1$.
- $\tilde{P}(A)=\int_{A} Z(\omega) d P(\omega), \forall A$

The below theorem helps in ensuring existence as well as finding the Radon-Nikodym derivative and the transformed process.

2.2 Girsanov theorem:

Let w_{t} be a brownian motion defined on (Ω, \mathcal{F}) where f is an adapted process, then an equivalent process \tilde{w}_{t} can be defined as

$$
\tilde{w}(t)=w(t)+\int_{0}^{t} f(s) d s
$$

where the Radon-Nikodym derivative is defined as

$$
Z(t)=\frac{d \tilde{P}}{d P}=\exp \left\{\int_{0}^{t} f(s) d w(s)-\frac{1}{2} \int_{0}^{t} f(s)^{2} d s\right\}
$$

2.3 Deflated process

Suppose that we have an asset S_{t}. We define a contingent claim V_{t} on S which pays $V(T)$ at maturity T. Assuming no arbitrage and completeness, the deflated process of V_{t} would be a martingale under some numeraire N_{t} and measure \tilde{P} i.e.

$$
\frac{V(t)}{N(t)}=E^{\tilde{P}}\left(\left.\frac{V(T)}{N(T)} \right\rvert\, \mathcal{F}_{t}\right)
$$

3 Black-Scholes-Merton option formula

We assume that in the physical measure, the below process is taken by a non-dividend paying stock,

$$
d \tilde{S}_{t}=\mu \tilde{S}_{t} d t+\sigma \tilde{S}_{t} d \tilde{w}_{t}
$$

where μ, σ and r are assumed to be constant over time.
Assuming $\theta=\frac{\mu-r}{\sigma}$. Under risk neutral measure,

$$
\begin{aligned}
d w(t) & =d \tilde{w}(t)+\theta d t \\
Z(t) & =\exp \left\{\int_{0}^{t} \theta d \tilde{w}(s)-\frac{1}{2} \int_{0}^{t} \theta^{2} d s\right\}
\end{aligned}
$$

We can rewrite the stock process as

$$
\begin{aligned}
d S(t) & =\mu S(t) d t+\sigma S(t) d \tilde{w}(t) \\
& =\mu S(t) d t+\sigma S(t)(d w(t)-\theta d t) \\
& =\mu S(t) d t+\sigma S(t)\left(d w(t)-\frac{\mu-r}{\sigma} d t\right) \\
& =r S(t) d t+\sigma S(t) d w(t)
\end{aligned}
$$

We now work in risk neutral measure. To solve the above, we start with

$$
\begin{aligned}
d\left(\ln \left(S_{t}\right)\right) & =\frac{\partial \ln \left(S_{t}\right)}{\partial S_{t}} d S_{t}+\frac{1}{2} \frac{\partial^{2} \ln \left(S_{t}\right)}{\partial S_{t}^{2}}\left(d S_{t}\right)^{2} \\
& =\frac{1}{S_{t}}\left(r S_{t} d t+\sigma S_{t} d w_{t}\right)+\frac{-1}{2 S_{t}^{2}}\left(r S_{t} d t+\sigma S_{t} d w_{t}\right)\left(r S_{t} d t+\sigma S_{t} d w_{t}\right) \\
& =r d t+\sigma d w_{t}-\frac{\sigma^{2}}{2} d t+\mathcal{O}\left(d t^{2}\right)+\mathcal{O}(d t . d w) \\
& =\left(r-\frac{\sigma^{2}}{2}\right) d t+\sigma d w_{t}
\end{aligned}
$$

Finally, we have,

$$
\begin{aligned}
S_{t} & =S_{0} \exp \left\{\left(r-\frac{\sigma^{2}}{2}\right) t+\sigma \int_{0}^{t} d w_{t}\right\} \\
& =S_{0} \exp \left\{\sigma w_{t}+\left(r-\frac{\sigma^{2}}{2}\right) t\right\} \\
& =S_{0} \exp \left\{\sigma \sqrt{t} X_{t}+\left(r-\frac{\sigma^{2}}{2}\right) t\right\}, X_{t} \sim N(0,1)
\end{aligned}
$$

The price of a call option can be written as

$$
\begin{aligned}
\operatorname{Call}\left(t, S_{t}\right) & =E\left[e^{-r t}\left|S_{t}-K\right|^{+}\right] \\
& =\frac{e^{-r t}}{\sqrt{2 \pi}} \int_{\infty}^{\infty}\left|S_{0} \exp \left\{\sigma x \sqrt{t}+\left(\mu-\frac{\sigma^{2}}{2}\right) t\right\}-K\right|^{+} e^{\frac{-x^{2}}{2}} d x
\end{aligned}
$$

which solves to the famous Black-Scholes-Merton formula.

4 Generalizations

The Black-Scholes-Merton model makes a lot of simplifying assumptions which are not observed in reality. In response to that, we would like to price under arbitrary numeraire where N_{t} follows the below process in the physical measure

$$
d \tilde{N}(t)=\mu(t) \tilde{N}(t) d t+v(t) \tilde{N}(t) d \tilde{w}(t)
$$

Under risk neutral measure, this can be transformed as

$$
d N(t)=r(t) N(t) d t+v(t) N(t) d w(t)
$$

Using the method employed in the earlier section and defining $R(t)=\exp \left\{\int_{0}^{t}-r(s) d s\right\}$, we get

$$
\begin{aligned}
& N(t)=N(0) \exp \left\{\int_{0}^{t}\left(r(s)-\frac{v(s)^{2}}{2}\right) d s+\int_{0}^{t} v(s) d w_{s}\right\} \\
& \Longrightarrow \frac{R(t) N(t)}{N(0) R(0)}=\exp \left\{\int_{0}^{t}\left(-\frac{v(s)^{2}}{2}\right) d s+\int_{0}^{t} v(s) d w_{s}\right\}
\end{aligned}
$$

The above can be treated as Radon-Nikodym derivative. Using Girsanov theorem, the new wiener process is

$$
d w_{t}^{N}=d w+v_{t} d t
$$

and the corresponding probability measure is

$$
P_{t}^{N}(A)=\int_{A} \frac{N(t) R(t)}{N(0) R(0)} d P_{t}, \text { where } A \in \mathcal{F}_{t}
$$

4.1 Correlation

Suppose that we have two correlated processes in the physical measure

$$
\begin{gathered}
d \tilde{S}_{1}(t)=\mu_{1}(t) \tilde{S}_{1}(t) d t+\sigma_{1}(t) \tilde{S}_{1}(t) d \tilde{w}_{1}(t) \\
d \tilde{S}_{2}(t)=\mu_{2}(t) \tilde{S}_{2}(t) d t+\sigma_{2}(t) \tilde{S}_{2}(t)\left[\rho d \tilde{w}_{1}(t)+\sqrt{1-\rho^{2}} d \tilde{w}_{2}(t)\right]
\end{gathered}
$$

It would be straightforward transformation if they were denominated under the same money market account. Suppose that the corresponding money market accounts are $N(t)=\exp \left\{-\int_{0}^{t} n(s) d s\right\}$ and $M(t)=\exp \left\{-\int_{0}^{t} m(s) d s\right\}$ respectively. Then the exchange rate would be $Q(t)=Q(0) \exp \left(\int_{0}^{t}(m(s)-\right.$ $n(s)) d s$). We want to move them under a common money market numeraire N. For S_{1}, we can refer to the earlier sections to write the below

$$
d S_{1}^{N}(t)=n(t) S_{1}^{N}(t) d t+\sigma_{1}(t) S_{1}^{N}(t) d w_{1}^{N}(t)
$$

For S_{2}, we first use the martingale representation theorem which states that

$$
\forall t \exists \Gamma(t) \text { s.t. } d\left(Q(t) N(t) S_{2}^{N}(t)\right)=\Gamma(t) d w^{N}(t)
$$

We define $\sigma_{2}(t)=\frac{\Gamma(t)}{Q(t) N(t) S_{2}^{N}(t)}$, then

$$
d\left(Q(t) N(t) S_{2}^{N}(t)\right)=\sigma_{2}(t) Q(t) N(t) S_{2}^{N}(t) d w^{N}(t)
$$

