Numeraire

Abhinav Mehta

April 26, 2020

1 Definition

A numeraire N_t is a strictly positive adapted process on \mathcal{F}_t ; and can be interpreted as a unit of reference. Common numeraires are:

• Money market account which is the money accumulated in a bank account i.e.

$$N(t) = \exp\left(\int_0^t r_s ds\right)$$

The induced equivalent martingale measure is famously called risk-neutral measure.

- Zero-coupon bond P(t,T) maturing T with P(t,T) = 1
- A combination of zero-coupon bonds with varying maturities i.e.

$$N_t = \sum_{k=1}^{n} (T_k - T_{k-1}) P(t, T_k)$$

where $0 < T_1 < T_2 < ... < T_n$ and $0 \le t \le T_n$.

2 Measure change

2.1 Equivalent measure

Measures \tilde{P} and P are said to be equivalent if

- (a) $supp(\tilde{P}) = supp(P)$ i.e. $\tilde{P}(A) > 0 \iff P(A) > 0, \forall A$.
- (b) There exists a stochastic process $Z = \frac{d\tilde{P}}{dP}$ s.t.
 - $Z(\omega) > 0, \forall \omega$
 - $E^P(Z) = \int Z(\omega)dP(\omega) = 1.$
 - $\tilde{P}(A) = \int_{A} Z(\omega) dP(\omega), \forall A$

The below theorem helps in ensuring existence as well as finding the Radon-Nikodym derivative and the transformed process.

2.2 Girsanov theorem:

Let w_t be a brownian motion defined on (Ω, \mathcal{F}) where f is an adapted process, then an equivalent process \tilde{w}_t can be defined as

$$\tilde{w}(t) = w(t) + \int_0^t f(s)ds$$

where the Radon-Nikodym derivative is defined as

$$Z(t) = \frac{d\tilde{P}}{dP} = \exp\left\{\int_0^t f(s)dw(s) - \frac{1}{2}\int_0^t f(s)^2 ds\right\}$$

2.3 Deflated process

Suppose that we have an asset S_t . We define a contingent claim V_t on S which pays V(T) at maturity T. Assuming no arbitrage and completeness, the deflated process of V_t would be a martingale under some numeraire N_t and measure \tilde{P} i.e.

$$\frac{V(t)}{N(t)} = E^{\tilde{P}}\left(\frac{V(T)}{N(T)} \mid \mathcal{F}_t\right)$$

3 Black-Scholes-Merton option formula

We assume that in the physical measure, the below process is taken by a non-dividend paying stock,

$$d\tilde{S}_t = \mu \tilde{S}_t dt + \sigma \tilde{S}_t d\tilde{w}_t$$

where μ , σ and r are assumed to be constant over time.

Assuming $\theta = \frac{\mu - r}{\sigma}$. Under risk neutral measure,

$$dw(t) = d\tilde{w}(t) + \theta dt$$
$$Z(t) = \exp\left\{\int_0^t \theta d\tilde{w}(s) - \frac{1}{2}\int_0^t \theta^2 ds\right\}$$

We can rewrite the stock process as

$$dS(t) = \mu S(t)dt + \sigma S(t)d\tilde{w}(t)$$

= $\mu S(t)dt + \sigma S(t) (dw(t) - \theta dt)$
= $\mu S(t)dt + \sigma S(t) \left(dw(t) - \frac{\mu - r}{\sigma} dt \right)$
= $rS(t)dt + \sigma S(t)dw(t)$

We now work in risk neutral measure. To solve the above, we start with

$$d(ln(S_t)) = \frac{\partial ln(S_t)}{\partial S_t} dS_t + \frac{1}{2} \frac{\partial^2 ln(S_t)}{\partial S_t^2} (dS_t)^2$$

= $\frac{1}{S_t} (rS_t dt + \sigma S_t dw_t) + \frac{-1}{2S_t^2} (rS_t dt + \sigma S_t dw_t) (rS_t dt + \sigma S_t dw_t)$
= $rdt + \sigma dw_t - \frac{\sigma^2}{2} dt + \mathcal{O}(dt^2) + \mathcal{O}(dt.dw)$
= $\left(r - \frac{\sigma^2}{2}\right) dt + \sigma dw_t$

Finally, we have,

$$S_{t} = S_{0} \exp\left\{\left(r - \frac{\sigma^{2}}{2}\right)t + \sigma \int_{0}^{t} dw_{t}\right\}$$
$$= S_{0} \exp\left\{\sigma w_{t} + \left(r - \frac{\sigma^{2}}{2}\right)t\right\}$$
$$= S_{0} \exp\left\{\sigma \sqrt{t}X_{t} + \left(r - \frac{\sigma^{2}}{2}\right)t\right\}, X_{t} \sim N(0, 1)$$

The price of a call option can be written as

$$Call(t, S_t) = E\left[e^{-rt}|S_t - K|^+\right]$$
$$= \frac{e^{-rt}}{\sqrt{2\pi}} \int_{\infty}^{\infty} \left|S_0 \exp\left\{\sigma x\sqrt{t} + \left(\mu - \frac{\sigma^2}{2}\right)t\right\} - K\right|^+ e^{\frac{-x^2}{2}} dx$$

which solves to the famous Black-Scholes-Merton formula.

4 Generalizations

The Black-Scholes-Merton model makes a lot of simplifying assumptions which are not observed in reality. In response to that, we would like to price under arbitrary numeraire where N_t follows the below process in the physical measure

$$dN(t) = \mu(t)N(t)dt + v(t)N(t)d\tilde{w}(t)$$

Under risk neutral measure, this can be transformed as

$$dN(t) = r(t)N(t)dt + v(t)N(t)dw(t)$$

Using the method employed in the earlier section and defining $R(t) = \exp\{\int_0^t -r(s)ds\}$, we get

$$N(t) = N(0) \exp\left\{\int_0^t \left(r(s) - \frac{v(s)^2}{2}\right) ds + \int_0^t v(s) dw_s\right\}$$
$$\implies \frac{R(t)N(t)}{N(0)R(0)} = \exp\left\{\int_0^t \left(-\frac{v(s)^2}{2}\right) ds + \int_0^t v(s) dw_s\right\}$$

The above can be treated as Radon-Nikodym derivative. Using Girsanov theorem, the new wiener process is

$$dw_t^N = dw + v_t dt$$

and the corresponding probability measure is

$$P_t^N(A) = \int_A \frac{N(t)R(t)}{N(0)R(0)} dP_t$$
, where $A \in \mathcal{F}_t$

4.1 Correlation

Suppose that we have two correlated processes in the physical measure

$$d\tilde{S}_{1}(t) = \mu_{1}(t)\tilde{S}_{1}(t)dt + \sigma_{1}(t)\tilde{S}_{1}(t)d\tilde{w}_{1}(t)$$
$$d\tilde{S}_{2}(t) = \mu_{2}(t)\tilde{S}_{2}(t)dt + \sigma_{2}(t)\tilde{S}_{2}(t)\left[\rho d\tilde{w}_{1}(t) + \sqrt{1 - \rho^{2}}d\tilde{w}_{2}(t)\right]$$

It would be straightforward transformation if they were denominated under the same money market account. Suppose that the corresponding money market accounts are $N(t) = \exp\{-\int_0^t n(s)ds\}$ and $M(t) = \exp\{-\int_0^t m(s)ds\}$ respectively. Then the exchange rate would be $Q(t) = Q(0)\exp(\int_0^t (m(s)-n(s))ds)$. We want to move them under a common money market numeraire N. For S_1 , we can refer to the earlier sections to write the below

$$dS_1^N(t) = n(t)S_1^N(t)dt + \sigma_1(t)S_1^N(t)dw_1^N(t)$$

For S_2 , we first use the martingale representation theorem which states that

$$\forall t \exists \Gamma(t) \text{ s.t. } d\left(Q(t)N(t)S_2^N(t)\right) = \Gamma(t)dw^N(t)$$

We define $\sigma_2(t) = \frac{\Gamma(t)}{Q(t)N(t)S_2^N(t)}$, then

$$d\left(Q(t)N(t)S_2^N(t)\right) = \sigma_2(t)Q(t)N(t)S_2^N(t)dw^N(t)$$