Poisson Process

Abhinav Mehta

April 23, 2020

1 Definition

Poisson process assumes a counting process $\left\{N_{t} ; t \in(0, \infty)\right.$; support $\left.=n \in \mathbb{N}\right\}$ to be a random variables with below properties:
(a) $N(0)=0$
(b) $N(t)-N(s) \perp N(y)-N(x)$ if $(s, t) \cap(x, y)=\{ \}$
(c) $N(t)-N(s) \sim \operatorname{Poisson}(\lambda(t-s))$

2 Properties

2.1 New arrival time

Let us define a stochastic process X which denotes the next arrival time in a Poisson process i.e. $X_{t}=\min \{\tau: N(t+\tau)-N(t)>0\}$

$$
\begin{aligned}
P\left(X_{t}<x\right) & =P(N(t+x)-N(t)>0) \\
& =1-P(N(t+x)-N(t)=0) \\
& =1-\frac{(\lambda x)^{0}}{0!} e^{-\lambda x} \\
& =1-e^{-\lambda x}
\end{aligned}
$$

Finally, we observe that new arrival time has an Exponential distribution i.e. $X_{t} \sim \operatorname{Exp}(\lambda)$.

2.2 $K^{\text {th }}$ arrival time

Let us define a stochastic process Y which denotes the $k^{t h}$ arrival time in a Poisson process i.e. $Y_{t, k}=\min \{\tau: N(t+\tau)-N(t)=k\}$

$$
\begin{aligned}
P\left(Y_{t, k}<x\right) & =P(N(t+x)-N(t) \geq k) \\
& =1-P(N(t+x)-N(t)<k) \\
& =1-e^{-\lambda x} \sum_{i=0}^{k-1} \frac{(\lambda x)^{i}}{i!} \\
& =e^{-\lambda x}\left(e^{\lambda x}-\sum_{i=0}^{k-1} \frac{(\lambda x)^{i}}{i!}\right) \\
& =e^{-\lambda x}\left(\sum_{j=0}^{\infty} \frac{(\lambda x)^{j}}{j!}-\sum_{i=0}^{k-1} \frac{(\lambda x)^{i}}{i!}\right) \\
& =e^{-\lambda x}\left(\sum_{j=k}^{\infty} \frac{(\lambda x)^{j}}{j!}\right)
\end{aligned}
$$

We observe that $Y_{t, k} \sim \operatorname{Gamma}(k, \lambda)$. We conclude that $k^{t h}$ arrival time in a Poisson process follows Gamma distribution.

2.3 Compensated poisson process

We introduce $M(t)=N(t)-\lambda t$ as Compensated Poisson process. We observe that

$$
E\left(M_{t}\right)=E\left(N_{t}-N_{0}\right)-\lambda t=0
$$

3 Equivalence

We begin by assuming assume independent, identical and exponentially distributed random variables i.e. $\left\{X_{i} \sim \operatorname{Exp}(\lambda) ; i \in \mathbb{N}\right.$; support $\left.=t \in(0, \infty)\right\}$. We prove that it is the same as the standard Poisson counting process we defined earlier.
(1a) $P(N(0)=0)=1$ is trivially true as

$$
P(N(0)=k)=\sum_{i=1}^{k} P\left(X_{i} \leq 0\right)=0, \forall k \in \mathbb{N}
$$

(1b) Without loss of generality, we take $\{i, j, r, m\} \subset \mathbb{N}$ such that $\{i, \ldots, i+r-1\} \cap\{j, \ldots, j+$ $m-1\}=\{ \}$. And since X_{i} 's are assumed to be independent, it implies that,

$$
\begin{aligned}
& P((N(t)-N(s))>r \cap(N(y)-N(x))>m) \\
& =P\left(\left(X_{i}+X_{i+1}+\ldots+X_{i+r-1}\right)<(t-s) \cap\left(X_{i}+X_{i+1}+\ldots+X_{i+r}\right)<(t-s)\right) \\
& =P\left(\left(X_{i}+X_{i+1}+\ldots+X_{i+r-1}\right)<(t-s)\right) P\left(X_{j}+X_{j+1}+\ldots+X_{i+m-1}<(y-x)\right) \\
& =P(N(t)-N(s)>r) P(N(y)-N(x)>m)
\end{aligned}
$$

We observe that $P((N(t)-N(s))>r \cap(N(y)-N(x))>m)=P(N(t)-N(s)>r) P(N(y)-$ $N(x)>m)$ implying that N_{t} 's increments are independent.
(1c) Without loss of generality, we take $\{i, r\} \subset \mathbb{N}$. Now,

$$
\begin{aligned}
& P(N(t)-N(s) \leq r) \\
& =1-P(N(t)-N(s)>r) \\
& =1-P\left(\left(X_{i}+X_{i+1}+\ldots+X_{i+r}\right)<(t-s)\right) \\
& =1-e^{-\lambda(t-s)}\left(\sum_{j=r+1}^{\infty} \frac{(\lambda(t-s))^{j}}{j!}\right) \\
& =e^{-\lambda(t-s)}\left(e^{\lambda(t-s)}-\sum_{j=r+1}^{\infty} \frac{(\lambda(t-s))^{j}}{j!}\right) \\
& =e^{-\lambda(t-s)}\left(\sum_{i=0}^{\infty} \frac{(\lambda(t-s))^{i}}{i!}-\sum_{j=r+1}^{\infty} \frac{(\lambda(t-s))^{j}}{j!}\right) \\
& =e^{-\lambda(t-s)}\left(\sum_{i=0}^{r} \frac{(\lambda(t-s))^{i}}{i!}\right)
\end{aligned}
$$

We observe that $N(t)-N(s) \sim \operatorname{Poisson}(\lambda(t-s))$.

